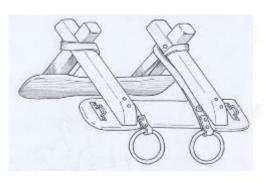


Coltivare con il biogas per ridurre l'impronta di carbonio ed aumentare sostenibilità e resilienza ai cambiamenti climatici

CONVEGNO DI APERTURA

Venerdì 5 luglio 2019 Centro "E. Avanzi" - Aula "A. Benvenuti" San Piero a Grado, Pisa

Tecniche e tecnologie per l'Agricoltura di Precisione a servizio della Agricoltura Conservativa


Marco Vieri, Daniele Sarri

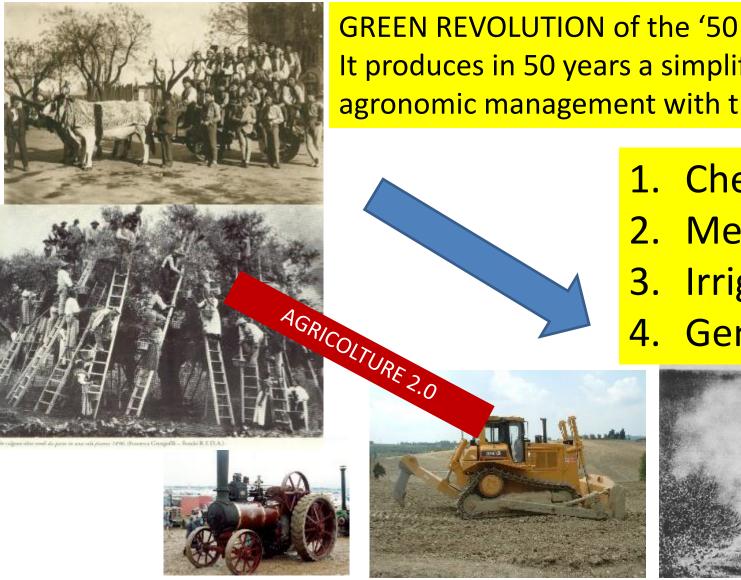
AWARE TO BE IN A NEW REVOLUTION

The new paradigm: from drawbar an manual labour to motorization and

digitalization - connectivity

TUSCANY REGION SISTEMIC APPROACH

Technological evolution will be profitable with a balanced inclusive and deep rooted social evolution ... from 90% to 5% of agricultural employers. ... motorization was effective with the rinsing of services and infrastructures



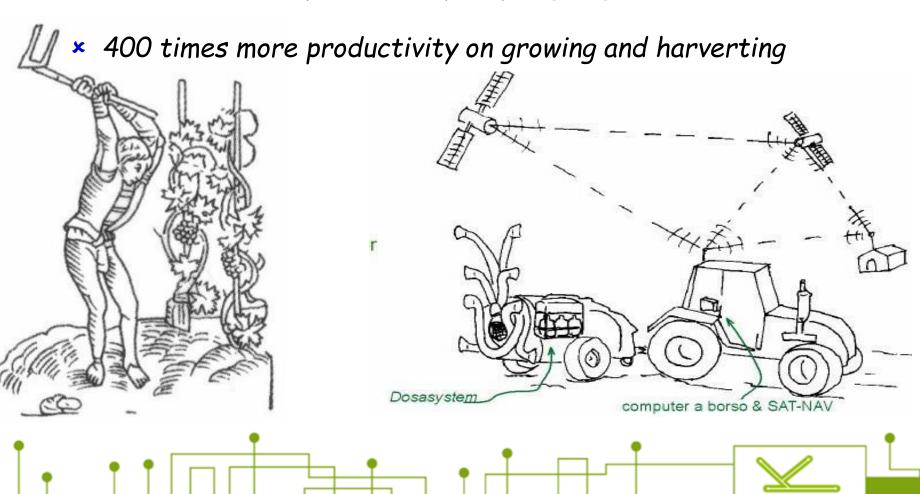
PREVIOUS AGRICULTURAL REVOLUTIONS IN ITALY

At the end of 1700 were born agricultural schools, new machines were invented and new best rational practices were disseminated in rural areas.

AFTER WORLD WAR II – WITH A DEEP INTRODUCTION OF INDUSTRY IN AGRICULTURE

It produces in 50 years a simplification of agronomic management with the use of:

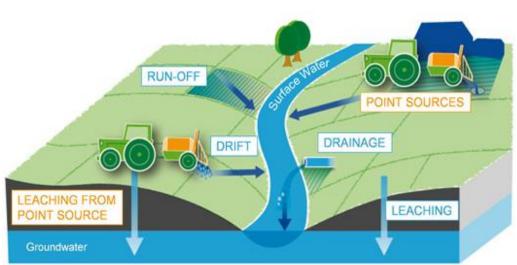
- 1. Chemistry
- 2. Mechanics
- 3. Irrigation
 - Genetics

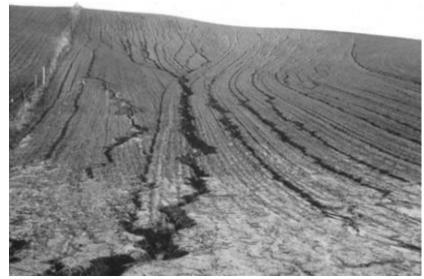


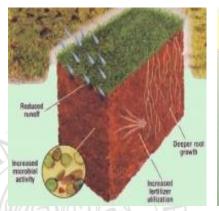
EQUAL DIGNITY AND IMPORTANCE OF TECHNOLOGIES

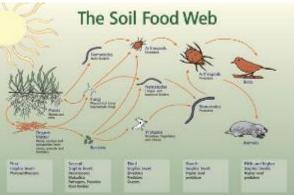
From hoe to satellite: two centuries of young age of humans in their mother earth

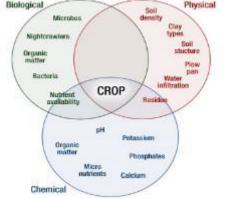
× 800 times more productivity on ploughing

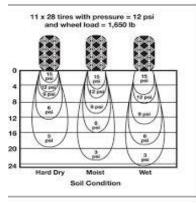



WHY GOOD PRACTICES & PA


THE RURAL ENVIRONMENT HIGHLIGHTS THE DELICATE BALANCE OF THE COMPLEX STRUCTURE AND BIOCENOSIS IN WHICH MAN IMPLEMENTS PRODUCTIVE ACTIVITIES




in the 90s the damages due to the loss of fertility of the soil, to their physical and biological erosion appear evident



1990 the "Brainpower" model Precision Agricolture

.. PA is not technology it is an innovative paradigm of punctual management of spatial variability Technology makes it possible to apply it on large quantities (surfaces, individuals,

frequencies, number of parameters, ...

Actions:

- ✓ Determines Punctual Variability
- ✓ Evaluate the Causes
- ✓ Indicates the improvement actions
- ✓ It evaluates the economic and environmental
- ✓ Implement specific operations
- ✓ It tracks the flow

What innovations

- Digitalization
- Connectivity
- Automation
- Traceability....

The scientific technical reference framework - the STOA document with a milestone in the state of the art on Precision Agriculture

Precision Agriculture and the Future of Farming in Europe

September 2016

Technical Horizon Scan

http://www.ep.europa.eu/stoa/

http://www.europarl.europa.eu/RegData/etudes/STUD/2016/581892/EPRS_STU(2016)581892_EN.pdf

Precision Agriculture and the future of farming in Europe Briefing paper 5: Overview of agricultural production in the EU

No.	Process	Technique	Expected environmental gains	
5	Avoid overlap of pesticide or fertilizer application	 Section control of sprayers and fertilizer distribution 	Reduce/avoid excessive chemical input in soil and risk of water pollution	
6	Variable rate manure application	On the go manure composition sensing Depth of injection adjustment	Reduced ground water pollution Reduced ammonia emissions into the air	
7	Precision infigation	Soil texture map	Avoidance of excessive water use or water logging. Reduction of fresh water use	
8	Patch herbicide spraying in field crops	Weed detection (on line/weed maps)	Reduction of herbidde use with map- based approach (in winter cereals by 6-81% for herbiddes against broad leaved weeds and 20–79% for grass weed herbickles*. Reduction of 15.2-17.5% in the area applied to each field was achieved with map-based automatic boom section control versus no boom	
9	Early and localized pest or disease treatment	Disease detection - Multisensor optical detection - Airborne spores detection - Volatile sensors	Reduction of pesticide use with correct detection and good decision model (84.5% savings in pesticides possible. (Moshou et al., 2011)	
10	Orchard and vineyard precision spraying	Tree size and architecture detection Precision IPM	Reduction in pesticide use up to 20- 30 % Reduction of sprayed area of 50-809	
11	Variable rate nitrogen fertilizer application according to crop requirements and weather conditions	Crop vegetation index based on optical sensors Soil nutrient maps	Improvement of nitrogen use efficiency. Reduction of residual nitrogen in soils by 30 to 50 %	
12	Variable rate phosphorus fertilizer application according to crop requirements and weather conditions	Crop vegetation index Soil nutrient maps	Improvement of phosphorus recovery of 25 %	
13	Crop biomass estimation	Crop vegetation index	Adjust the fungicide dose according to crop biomass (Jensen and Jergensen 2016)	
14	Mycotoxin reduction	Crop vegetation index and fungal disease risk	Optimisation of fertilizer dose and fungioide use on the basis of higher disease risk in areas with high crop density	

environmental and economic effects

Up to 15 % less time, fuel consumption, GHGs emissions with **AUTOMATIC GUIDANCE** Up to 70 % saving in crop protection chemicals use with DSS and **Automation in VRT** reduction in soil losses and 15 times nutrients waste

Table 1. Expected environmental gains from main PA processes and techniques

No.	Process	Technique	Expected environmental gains	
1	Timeliness of working under favourable weather conditions	Automatic machine guidance with GPS	Reduction in soil compaction Reduce carbon featprint (10 % reduced fuel consumption in field operations) Reduction of erosion (from 17 to 1 tonnes/ha/year and perhaps lower) Reduction of rorrolf of surface water and reduced runoff fertilizers Reduced flood risk	
2	Leave permanent vegetation on key location and at field borders	Automatic guidance and contour cultivation on hilly terrain		
3	Reduce or slow down water flow between potato/vegetable ridges to slow water	micro-dams or micro- reservoirs made between ridges("tied ridges") ridges along field contours	Reduced sediment runoff Reduced fertilizer runoff	
4	Keep fertilizer or pesticide at recommended distances from water ways	Automatic guidance based on geographic information Section control of sprayers and fertilizer distribution	Avoidance/elimination of direct contamination of river water	

^{**}Luck et al 2010

²⁵⁵ Dammer and Wartenberg 2007

Precision agriculture in Europe

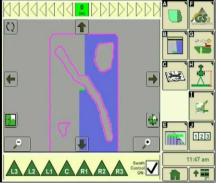
Legal, social and ethical considerations

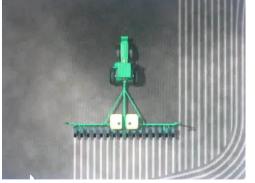
EPRS | European Parliamentary Research Service

Author: Mihalis Kritikos

Scientific Foresight Unit (STOA)

November 2017 - PE 603.207

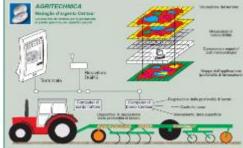


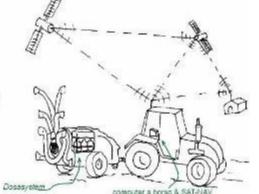


- ✓ ISOBUS
- ✓ AUTOMATIC

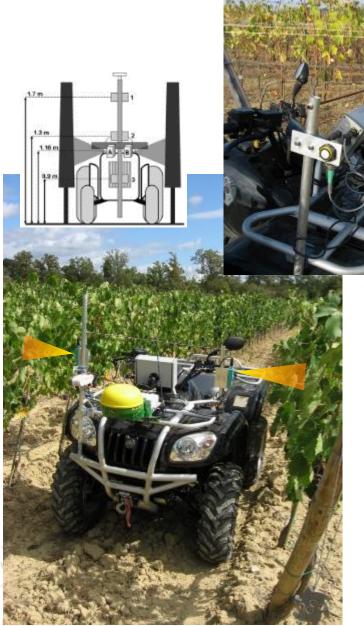
 DRIVEN
- PRESCRIPTIONMAPs
- AUTOMATION



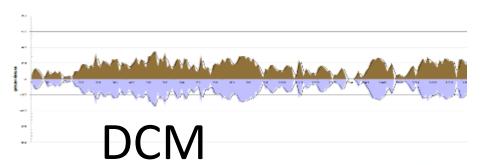

TATILE Chnologies available


....nella pratica operativa??

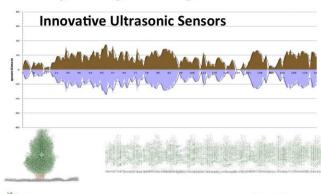
Progettazione e realizzazione nuovi impianti


- · Gestione agronomica differenziata VRT
 - Fertilizzazioni
 - Defogliatura
 - Vendemmia
 - · Trattamenti antiparassitari
 - Irrigazione
 - Tracciabilità
 - · Controllo flotte
 - · Web-Gis gestionali aziendali

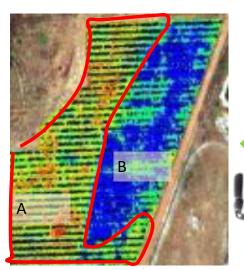
Giornata di studi | Milano 15/11/2013 | paradigmi della sostenibilità



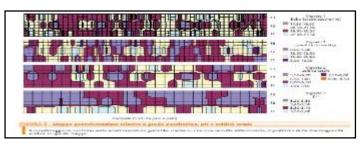
EERISTUDI EERISTUDI EERISTUDI EERISTUDI ONE OF SUSTAINABLE AND PROTITABLE APPLICATIONS



VRA – CAS canopy management and adaptation of treatment



Innovative proximal perception systems



New generation LIDAR

Differential Harvesting

Transversal conveyor

Crop B

Crop A

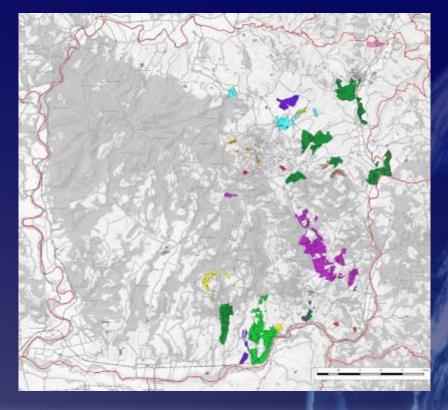
The map is loaded on USB flash drive for use in the HQS machine. Equipped with the GPS technology, the grape harvester knows its position and reads the map to determine A and B quality grape areas. Automatically, the harvester moves its conveyor to the right or to the left according to the map information.



INTELLIGENT ARMS

Experiences in Tuscany - VRT by drone


- Spraying nutrinets anche chemicals
- Pollinating
- launch of predators



Telemetry, Fleet control, DDS, Traceability in management

TERRITORIAL DIGITAL PLATFORM AND DIRECT PARTICIPATING COMPANIES

Farmers	Vineyards [ha]	Olive growing [ha]
Az. Agr. Casanova di Neri di Giacomo Neri	72,3	7,1
Az. Agr. Martoccia di Brunelli Luca	8,3	1,4
Az. Agr. Podere La Vigna di Rubegni Adriano	6,4	1,1
Az. Agr. San Filippo di R. Giannelli	9,4	0,7
Siro Pacenti di Pacenti Giancarlo	23,1	3,6
Soc. Agr. Canalicchio di Sopra di Ripaccioli Marco & F.lli s.s.	19,1	2,3
Talenti Riccardo	14,9	3,6
Tassi di Franci Franca	5,2	0,3
Tenuta di Sesta di Ciacci Giovanni	36,5	22,9
Tenuta Fanti di Fanti Baldassarre Filippo	51,4	36,4

System Architecture

Monitoring

- Aerial surveys:
 - ■RGB Camera
 - Multispectral camera
 - Hyperspettral Camera
 - ■Gamma rays
- Data collections on crops:
 - ■Physiological measurements
 - ■Vigour indexes NDVI NDRE
- Data collection on soil:
 - Conductivity measurements with electromagnetic induction
 - ■Profiles and drills
 - Laboratory analysis
- Data collection from weather stations:
 - Atmospheric pressure
 - **■**Temperature
 - Rainfall
 - ■Humidity of the area
 - Wind intensity
 - **■**Solar radiation
 - ■Dew point
 - Leaf wetness

Data processing

Piattaforma territoriale multi-servizi per la DIGITAL AGRICULTURE

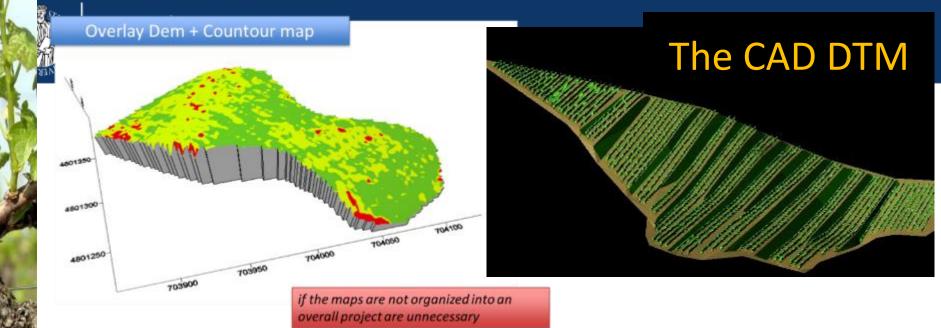
Field activities

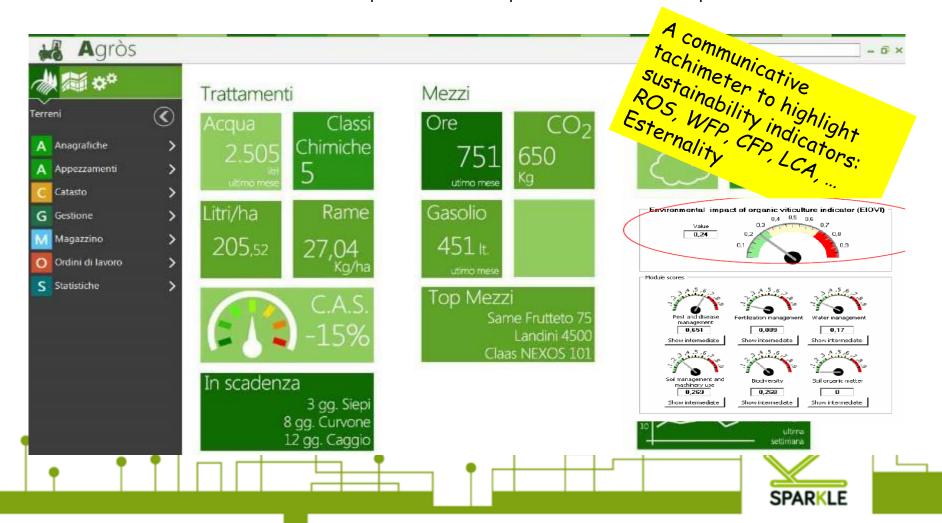
Services to companies and stakeholders

- Digital maps for the management of parcels with 1 sqm mesh:
 - ■Orthophoto (4 cm / pixel)
 - ■Vegetational maps and NDVI
 - Pedological maps
 - Hydrological modeling
 - ■Water at field capacity (FC)
 - Water at the point of withering (WP)
 - ■Water available for plants (AWC)
 - Saturated hydraulic permeability (Ksat)
 - Weather-weather maps
 - Prescription maps
- Telemetry control of operations
- Field books
- DSS Services Decision Support System for:
 - Crop protection alarms
 - •Logistic decisions support for the collection of products
- Analytical accounting of georeferenced parcel
- Traceability
- Typicality
- Identification of biodiversity footprints

CROP VIGOUR INDEXING NDVI-NDRE

ARTEA DATA – PIANO COLTURALE

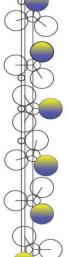



Overlay general air photos

To ADD INFORMATIONS INTO A FARM SYSTEM MANAGEMENT

Farm dashboard with on time emission and consumption indexes compared with conventional practices

on time emission and consumption indexes compared with conventional practices



SMASH for VITICULTURE

SMASH Smart Machine for Agricultural Solutions Hightech

Puntual detection and SPRAY

 Precise mechanical weed control on the row

Regione Toscana

SMASH

Solutions

Hightech

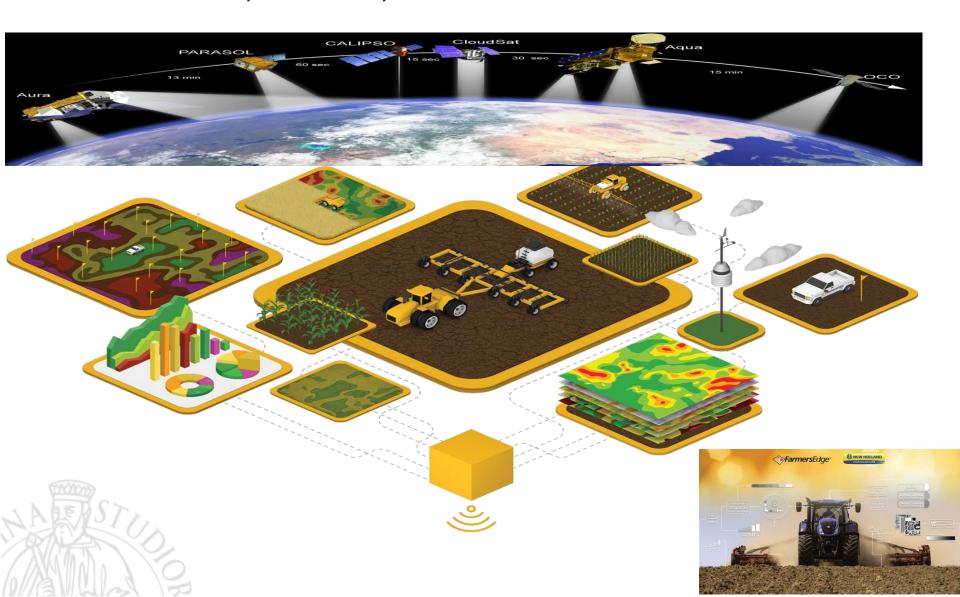
Smart Machine

for Agricultural

Soil control by PLANTOID

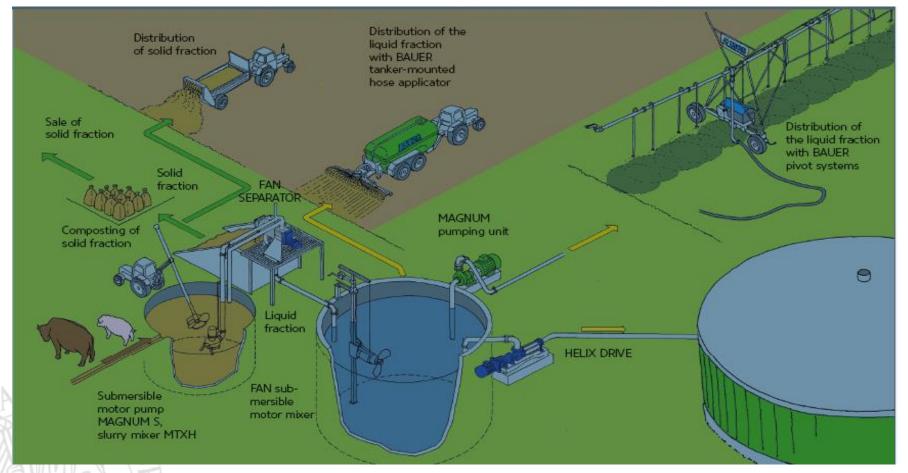
SMASH for HORTICULTURE

Precise mechanical weed control on the row



Alta tecnologia per l'Agricoltura Conservativa

MISURARE, ANALIZZARE, CONOSCERE AGIRE APPROPRIATAMENTE

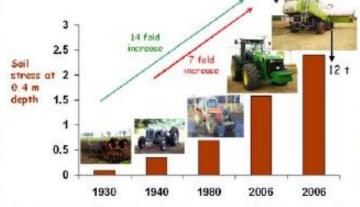


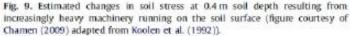
PRECISION FARMING DI SECONDO LIVELLO

RIEQUILIBRIO DELLA SOSTANZA ORGANICA, VARIABILIZZATA IN BASE ALLE ESIGENZE PEDOLOGICHE DEI TERRENI E NUTRIZIONALI DELLE COLTURE, RILEVATE <u>DA SENSORI OTTICI SU MACCHINE, DRONI E/O SATELLITE</u>

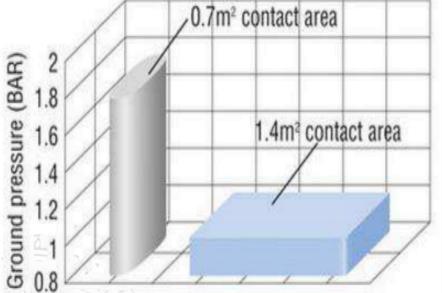
GESTIONE APPORTI SOSTANZA ORGANICA A BASSO COMPATTAMENTO

- → Trattrice a basso compattamento e con tecnologie DSS
- **→** Aratro per gestione sottoprodotti da combinarsi a trattrice con tecnologie DSS
- **⇒** Erpice rotante per gestione sottoprodotti da combinarsi a trattrice con tecnologie DSS
- → Carro spanditore per gestione sottoprodotti da combinarsi a trattrice con tecnologie DSS
- **→** Carro botte per gestione sottoprodotti da combinarsi a trattrice con tecnologie DSS




Compattamento: cosa, chi, dove, quando, perché

Morris et al., 2010



24" SmartTrax

1050 Tyres

Transport width

6.5m

1050 Tyres x 2

24' SmartTrax

- Superficie di appoggio di livello superiore
 - Rispetto ai MegaXbib 1050/50R32 (gli pneumatici di dimensioni maggiori), la superficie di contatto al suolo è pari al doppio con i cingoli SmartTrax da 24" (i più stretti della gamma).

MAKING ORDER IN A CHAOTIC UNIVERSE OF TECHNOLOGICAL PROPOSALS

- ✓ AUTOMATIC GUIDE
- PRODUCTION MAPS
- ✓ PRESCRIPTION MAPS
- ✓ AUTOMATION
- ✓ TELEMETRY

CLEARLY DEFINE THE AREAS IN WHICH THE TECHNOLOGIES BECOME "ENABLING" AND PROFITABLE

Precision sustainable Farming Spatial Intelligence and Precise Management High Technology Farming is a way that makes it possible

EYES

monitoring wide areas (sensors and digital maps)

TOUCH

understanding the answer on the treated elements (proximity sensors)

ARMS

to develop accurate assignments (automation, robot)

MIND

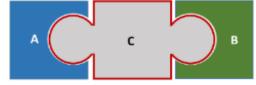
to knowingly choose thing, where and whether to intervene on the single elements (models e Decision Support System)

MEMORY

to keep trace of things done (telemetry, traceability)

EXPERIENCE

multi-annual data handling


IDENTITY

local and regional in the sustainable use of the resources

Integrated multicompetencies multiactor approach in effective and profitable innovation development – COLLABORATIVE ECOSYSTEM

 Automatic guidance in tractors operating on open field: a mature integrated innovation system

 High technologies for farming: caotic scenario to be proper developed in actuating steps and appropriate competencies and actors.

	Chain of technology development in High Tech Farming					
	Element	Product type	Problems and needs	Who does what 7 Fiel 6 Pro		
	Satellite, aerplane, drone, terrain station, onboard system	vector	Resolution, frequency please do no	Engineerings comp Engineerings comp Correct Engineerings comp Correct Correct Engineerings comp Correct Engineerings comp		
	FOTONICS	Sensors	Direct or Indirect measure or index	Phisics researchers		
	Digital Data	Raw Data	interconnettivity	Informatics competencies		
	Data Comunication	Telecomunicazioni	Broad Band	Engineers researchers		
	Data mining	dati normalizzati	Арр	Informatics competencies		
	Informative digital	GIS + Digital Hubs	Hubs and Services	Agro-informatic &		
ر 🚛	systems	territoriali		Informatics systems		
	Data analysis	Biological and environmental models	Agronomic, Biological and Environmental Science Knowledges	Agronomous researchers		
\ 녹〓 /	Decision support systems	Manager interface	Development of effective Decision Support System	Agronomous Agroinformatic		
	Mission Plan for Variable Rate Treatment automatism	Data meaning and managing	Agro-electronics and agroinformatics training Agricultural mace engineers Agroinformatics &e agroelettronics			
	AVT machinery set up	Automation	Agro-electronics and agroinformatics training	Agricultural machinery engineers , Agroinformatics		

A TERRITORIAL DEVELOPMENT SYSTEM FOR INNOVATION

The evolution of agricultural mechanics has become profitable when:

- ✓ the machines have become appropriate and reliable
 (historic failures of the Borello tractor and Bonmartini tire
 tracks);
- ✓ retailer, motorist, mechanic and gum services have become present in the territory (within 100 km);
- ✓ <u>training centers have been established</u> Famous in Tuscany was the Agricultural Mechanization Training Center of Borgo a Mozzano (Lucca) financed by the Government and by the ESSO.

Tuscany first highlighted these needs and identified them as essential

- The territorial approach of the PRODUCTION ECOSYSTEM.
 This had already been defined in the regional ROADMAP for RIS3, defining the INNOVATION support PLATFORMS
- The BUSINNES CASE in agriculture, which is a non-relocatable external rural activity, is the CASE OF TERRITORIAL USE and not the single product, service or activity.

1970 - PICCOLA ENCICLOPEDIA DI MECCANICA AGRARIA ESSO.D LIBINA MADINA IL IN SAMANDA 2009.

info@sparkle-project.eu www.sparkle-project.eu www.agrismartlab.unifi.it

Grazie for Your precious attention

to contact: marco.vieri@unifi.it